$I$. Find $f$ that saticities the integral equation

$$
\int_{-\infty}^{\infty} f(x-y) e^{-|y|} d y=2 e^{-|x|}-e^{-2|x|}
$$

Proof: Let $g(x)=e^{-|x|}, \quad h(x)=2 e^{-|x|}-e^{-2|x|}$
Then $f * g(x)=h(x)$
Recall $\widehat{f * g(\xi)}=\hat{f}(\xi) \hat{g}(\xi)$.
Thus $\hat{f}(\xi) \hat{g}(\xi)=\hat{h}(\xi)$

$$
\begin{aligned}
\hat{g}(\xi) & =\int_{-\infty}^{\infty} e^{-|x|} e^{-2 \pi i x \xi} d x \\
& =\int_{0}^{\infty} e^{-x} e^{-2 \pi i x \xi} d x+\int_{-\infty}^{0} e^{x} e^{-2 \pi i x \xi} d x \\
& =\frac{1}{1+2 \pi i \xi}+\frac{1}{1-2 \pi i \xi} \\
& =\frac{2}{1+4 \pi^{2} \xi^{2}} \\
\hat{h}(\xi) & =\frac{4}{1+4 \pi^{2} \xi^{2}}-\frac{1}{2} \frac{2}{1+4 \pi^{2}\left(\frac{\xi}{2}\right)^{2}} \\
& =\frac{4}{1+4 \pi^{2} \xi^{2}}-\frac{4}{4+4 \pi^{2} \xi^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{4}{1+4 \pi^{2} \xi^{2}}\left(1-\frac{1+4 \pi^{2} \xi^{2}}{4+4 \pi^{2} \xi^{2}}\right) \\
& =\frac{2}{1+4 \pi^{2} \xi^{2}} \frac{6}{4+4 \pi^{2} \xi^{2}} \\
& =\hat{g}(\xi) \frac{6}{4+4 \pi^{2} \xi^{2}}
\end{aligned}
$$

Therefore, $\hat{f}(\xi)=\frac{6}{4+4 \pi^{2} \xi^{2}}=\frac{3}{2} \hat{k}(\xi)$
where $k(x)=e^{-2|x|}$
Put $f(x):=\frac{3}{2} e^{-2|x|}$
Since $f, g, h, \frac{1}{1+4 \pi^{2} \xi^{2}}, \frac{1}{4+4 \pi^{2} \xi^{2}}$ are all continuous and of moderate decrease, by Fourier Inversion Formula, $f(x)=\frac{3}{2} e^{-2|x|}$ is a solution to the given equation.
II. Suppose $f$ is continuous and of moderate decrease such that
$\int_{-\infty}^{\infty} f(y) e^{-y^{2}} e^{2 \times y} d y=0$ for all $x \in \mathbb{R}$.
Then $f \equiv 0$.
Prof: Let $g(z)=e^{-z^{2}}$.
Then $\quad f * g(x)=\int_{-\infty}^{\infty} f(y) e^{-(x-y)^{2}} d y$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} f(y) e^{-y^{2}} e^{2 x y} d y e^{-x^{2}} \\
& =0 \quad \text { for all } \quad x \in \mathbb{R}
\end{aligned}
$$

Then $\hat{f}(\xi) \hat{g}(\xi)=\widehat{f * g}(\xi)=0, \forall \xi \in \mathbb{R}$
Recall that $e^{-\pi x^{2}} \stackrel{F}{\longrightarrow} e^{-\pi \xi^{2}}$.
Thus $\hat{g}(\xi) \neq 0, \forall \xi \in \mathbb{R}$.
Then $\hat{f}(\xi)=0, \forall \xi \in \mathbb{R}$.
Since $f, \hat{f}$ are of moderate decrease, by Fourier Inverse Formula, $f \equiv 0$.
III. Let $h(x)=e^{-|x|} \cos x$.

Fact: $\hat{h}(\xi)=2 \frac{(2 \pi \xi)^{2}+2}{(2 \pi \xi)^{4}+4}$
Compute $\int_{-\infty}^{\infty}\left(\frac{x^{2}+2}{x^{4}+4}\right)^{2} d x$
Proof: Let $g(x)=\pi h(2 \pi x)=\pi e^{-2 \pi|x|} \cos 2 \pi x$
Then $\hat{g}(\xi)=\pi \cdot \frac{1}{2 \pi} \hat{h}\left(\frac{\xi}{2 \pi}\right)=\frac{\xi^{2}+2}{\xi^{4}+4}$.
By Planchered Formula,

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left(\frac{\xi^{2}+2}{\xi^{4}+4}\right)^{2} d x & =\int_{-\infty}^{\infty}|\hat{g}(\xi)|^{2} d \xi \\
& =\int_{-\infty}^{\infty}|g(x)|^{2} d x \\
& =\pi^{2} \int_{-\infty}^{\infty} e^{-4 \pi|x|}(\cos 2 \pi x)^{2} d x \\
& =2 \pi^{2} \int_{0}^{\infty} e^{-4 \pi x}\left(\frac{e^{2 \pi i x}+e^{-2 \pi i x}}{2}\right)^{2} d x \\
& =\frac{\pi^{2}}{2} \int_{0}^{\infty} e^{-4 \pi x}\left(e^{4 \pi i x}+2+e^{-4 \pi i x}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\pi^{2}}{2} \int_{0}^{\infty}\left(2 e^{-4 \pi x}+e^{(-4 \pi+4 \pi i) x}+e^{(-4 \pi-4 \pi i) x} d x\right. \\
& =\frac{\pi^{2}}{2}\left(-\frac{2}{-4 \pi}-\frac{1}{-4 \pi+4 \pi i}-\frac{1}{-4 \pi-4 \pi i}\right) \\
& =\frac{\pi^{2}}{2}\left(\frac{1}{2 \pi}+\frac{1}{4 \pi-4 \pi i}+\frac{1}{4 \pi+4 \pi i}\right) \\
& =\frac{\pi^{2}}{2}\left(\frac{1}{2 \pi}+\frac{8 \pi}{16 \pi^{2}+16 \pi^{2}}\right) \\
& =\frac{\pi^{2}}{2}\left(\frac{1}{2 \pi}+\frac{1}{4 \pi}\right) \\
& =\frac{3 \pi}{8}
\end{aligned}
$$

